Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acid adaptation in can induce antimicrobial resistance (AMR), posing challenges to global public health. We investigated the effects of acid adaptation on antimicrobial susceptibility, gene expression, zeta potential, and the outer membrane (OM) properties of NCCP 13719. The acid-adapted (AA) strain exhibited increased resistance to multiple antimicrobials, with minimum inhibitory concentrations for colistin and polymyxin B increasing eight- and two-fold, respectively. Transcriptomic analysis identified 2225 differentially expressed genes, including upregulated genes associated with resistance to cationic antimicrobial peptides such as , , and . The upregulation of the operon suggests modifications in lipid A of lipopolysaccharides (LPS), reducing the negative charge of the OM and decreasing polymyxin binding affinity. Zeta potential measurements indicated a shift toward a less negative surface charge in the AA strain, which is consistent with LPS modifications. The AA strain also showed decreased OM permeability, which correlated with increased resistance to antimicrobials that penetrate the OM. These mechanisms collectively diminish the efficacy of polymyxins and highlight the potential for environmental factors to drive antimicrobial resistance. In conclusion, the acid adaptation of NCCP 13719 enhances AMR through changes in gene expression and OM modifications, highlighting the need for careful control of acidic environments during the treatment of medical devices and wastewater from food processing to prevent the emergence of resistant strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms12122549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!