A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Growing Within Cystic Fibrosis Airway Mucus. | LitMetric

Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Growing Within Cystic Fibrosis Airway Mucus.

Microorganisms

Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Published: December 2024

is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations. Succinic acid demonstrated an adjuvant effect of ciprofloxacin against grown within CF mucus at pH levels below pKa1 during the early bacterial growth stages. In examining planktonic growth and biofilms under these conditions, we found that succinic acid demonstrated strong antibacterial and antibiofilm properties. Conversely, succinic acid activity decreased at later growth stages, though it enhanced the ciprofloxacin effect, especially against mucoid biofilms. Moreover, we noted that, in dense CF mucus, succinic acid activity was attenuated compared to a non-CF environment, indicating diffusion challenges. These findings underscore the potential of succinic acid as a therapeutic adjuvant for improving antibiotic treatment outcomes and overcoming biofilm-associated resistance in CF.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms12122538DOI Listing

Publication Analysis

Top Keywords

succinic acid
32
succinic
8
acid
8
adjuvant ciprofloxacin
8
cystic fibrosis
8
dense mucus
8
acid demonstrated
8
growth stages
8
acid activity
8
ciprofloxacin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!