Pharmacodynamic Evaluation of Phage Therapy in Ameliorating ETEC-Induced Diarrhea in Mice Models.

Microorganisms

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China.

Published: December 2024

AI Article Synopsis

Article Abstract

Enterotoxigenic (ETEC) is a major pathogen causing diarrhea in humans and animals, with increasing antimicrobial resistance posing a growing challenge in recent years. Lytic bacteriophages (phages) offer a targeted and environmentally sustainable approach to combating bacterial infections, particularly in eliminating drug-resistant strains. In this study, ETEC strains were utilized as indicators, and a stable, high-efficiency phage, designated vB_EcoM_JE01 (JE01), was isolated from pig farm manure. The genome of JE01 was a dsDNA molecule, measuring 168.9 kb, and a transmission electron microscope revealed its characteristic T4-like Myoviridae morphology. JE01 effectively lysed multi-drug-resistant ETEC isolates. Stability assays demonstrated that JE01 retained its activity across a temperature range of 20 °C to 50 °C and a pH range of 3-11, showing resilience to ultraviolet radiation and chloroform exposure. Furthermore, JE01 effectively suppressed ETEC adhesion to porcine intestinal epithelial cells (IPEC-J2), mitigating the inflammatory response triggered by ETEC. To investigate the in vivo antibacterial efficacy of phage JE01 preparations, a diarrhea model was established using germ-free mice infected with a drug-resistant ETEC strain. The findings indicated that 12 h post-ETEC inoculation, intragastric administration of phage JE01 significantly reduced mortality, alleviated gastrointestinal lesions, decreased ETEC colonization in the jejunum, and suppressed the expression of the cytokines IL-6 and IL-8. These results demonstrate a therapeutic benefit of JE01 in treating ETEC-induced diarrhea in mice. Additionally, a fluorescent phage incorporating red fluorescent protein (RFP) was engineered, and the pharmacokinetics of phage therapy were preliminarily assessed through intestinal fluorescence imaging in mice. The results showed that the phage localized to ETEC in the jejunum rapidly, within 45 min. Moreover, the pharmacokinetics of the phage were markedly slowed in the presence of its bacterial target in the gut, suggesting sustained bacteriolytic activity in the ETEC-infected intestine. In conclusion, this study establishes a foundation for the development of phage-based therapies against ETEC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678793PMC
http://dx.doi.org/10.3390/microorganisms12122532DOI Listing

Publication Analysis

Top Keywords

etec
9
phage
8
phage therapy
8
etec-induced diarrhea
8
diarrhea mice
8
je01
8
je01 effectively
8
phage je01
8
pharmacokinetics phage
8
pharmacodynamic evaluation
4

Similar Publications

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Background: Enterotoxigenic F4 E. coli (F4-ETEC) pose an economic threat to the swine industry through reduced growth, increased mortality and morbidity, and increased costs associated with treatment. Prevention and treatment of F4-ETEC often relies on antimicrobials; however, due to the threat of antimicrobial resistance, antimicrobial use is being minimized, and hence alternative control methods are needed.

View Article and Find Full Text PDF

Background: The emergence of antibiotic resistant microorganisms associated with conventional swine production practices has increased interest in acid-based compounds having antimicrobial properties and other biological functions as nutritional interventions. Despite the interest in organic acids and monoglycerides, few studies have examined the effects of the combination of these acid-based additives in weaned pigs under disease challenge conditions. Therefore, this study aimed to investigate the effects of dietary supplementation with blend of organic acids and/or medium-chain fatty acid monoglycerides on intestinal health and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC) F18 at 4-week of age.

View Article and Find Full Text PDF

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

Cases of antibiotic-resistant () infections are becoming increasingly frequent and represent a major threat to our ability to treat cancer patients. The emergence of antimicrobial resistance threatens the treatment of infections. In this study, the antimicrobial profiles, virulent genes, and the frequency of extended-spectrum beta-lactamase (ESBL) gene carriage in fecal isolates from cancer patients at the Laquintinie Hospital in Douala (Cameroon) were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!