Inhibition, Gastritis Attenuation, and Gut Microbiota Protection in C57BL/6 Mice by NCUH062003.

Microorganisms

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.

Published: December 2024

(), one of the most prevalent pathogenic bacteria worldwide, is the leading cause of gastritis, gastric intestinal metaplasia, and gastric cancer. Antibiotics, the conventional treatment for eliminating , often lead to severe bacterial resistance, gut dysbiosis, and hepatic insufficiency and fail to address the inflammatory response or gastric mucosal damage caused by infection. In this study, based on 10-week animal experiments, two models of NCUH062003 for the prophylaxis and therapy of infection in C57BL/6 mice were established; a comprehensive comparative analysis was performed to investigate the anti- effect of probiotics, the reduction in inflammation, and repair of gastric mucosal damage. ELISA, immunohistochemistry, and pathology analyses showed that NCUH062003 decreased the expression of pro-inflammatory cytokine interleukins (IL-1β, IL-6) and myeloperoxidase (MPO) and reduced neutrophil infiltration in the gastric mucosa lamina propria. Immunofluorescence and biochemical analysis showed that NCUH062003 resisted gastric epithelial cell apoptosis, increased the level of superoxide dismutase (SOD) in gastric mucosa, and promoted the expression of tight junction protein ZO1 and Occludin. In addition, through high-throughput sequencing, in the probiotic therapy and prophylactic mode, the diversity and composition of the gut microbiota of HP-infected mice were clarified, the potential functions of the gut microbiota were analyzed, the levels of short-chain fatty acids (SCFAs) were measured, and the effects of NCUH062003 on the gut microbiota and its metabolites in HP-infected mice treated with amoxicillin/metronidazole were revealed. This study provides functional strain resources for the development and application of microbial agents seeking to antagonize beyond antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms12122521DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
c57bl/6 mice
8
gastric mucosal
8
mucosal damage
8
gastric mucosa
8
hp-infected mice
8
gastric
7
gut
5
ncuh062003
5
inhibition gastritis
4

Similar Publications

Fecal microbiota transplantation in severe pneumonia: a case report on overcoming pan-drug resistant infection.

Front Med (Lausanne)

December 2024

Department of Respiratory and Critical Care Medicine, Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of Joint Logistics Support Force, Fuzhou, China.

Objective: To evaluate the therapeutic potential of fecal microbiota transplantation (FMT) in treating severe pneumonia patients with concurrent pan-drug resistant infection.

Methods: A case report of a 95-year-old female patient with severe pneumonia, complicated by pan-resistant bacterial infections, is presented. The patient was diagnosed with severe pneumonia caused by COVID-19, along with co-infections of , , , , ESBL-producing pan-drug resistant and pan-resistant .

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Introduction: The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice.

Method And Results: Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the to ratio.

View Article and Find Full Text PDF

Breastfeeding represents a strong selective factor for shaping the infant gut microbiota. Besides providing nutritional requirements for the infant, human milk is a key source of oligosaccharides, human milk oligosaccharides (HMOs), and diverse microbes in early life. This study aimed to evaluate the influence of human milk microbiota and oligosaccharides on the composition of infant faecal microbiota at one, three, and nine months postpartum.

View Article and Find Full Text PDF

Cocoa-derived flavanols (CDF) may act as prebiotics. However, evidence is inconsistent, and the duration and dose of CDF intake needed to elicit any prebiotic effect are undefined. This randomized, double-blind, crossover study determined the effects of short-term, high-dose dietary supplementation with CDF versus matched placebo on gut microbiota composition in 8 healthy adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!