Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Avian influenza subtype H5N1 has caused outbreaks worldwide since 1996, with the emergence of the Guandong lineage in China. The current clade 2.3.4.4b has evolved from this lineage, with increased virulence and mass mortality events in birds and mammals. The objective of this study was the analysis of 17 viral genomes of H5N1 avian influenza isolated in Venezuela during the 2022-2023 outbreak. The eight viral genomic segments were amplified using universal primers and sequenced via next-generation sequencing. The sequences were analyzed to confirm the H5 hemagglutinin clade, identify possible genetic reassortments, and perform a phylogenetic and docking analysis of the viral isolates. The viruses found in Venezuela belonged, as expected, to clade 2.3.4.4b and formed a monophyletic clade with North American influenza viruses, with no evidence of further reassortment. The introduction of the virus in South America is associated with bird migration through the Atlantic (Venezuela), Atlantic/Mississippi (Choco, Colombia), and Pacific migratory flyways, with the emergence of several viral lineages. Several mutations were found in all segments of the genome, although none of the key mutations was involved in mammalian adaptation. Moreover, in silico structural analysis suggests, as expected, that the viral hemagglutinin maintained a predilection for avian α2,3-linked sialic acid. The unprecedented pathogenic outbreak of avian influenza disease in South America was associated with the circulation of three different lineages, which maintain a lower affinity for the mammalian receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms12122519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!