Bats are recognized as reservoirs for diverse paramyxoviruses, some of which are closely related to known human pathogens or directly implicated in zoonotic transmission. The emergence of the zoonotic Sosuga virus (SOSV) from Egyptian rousette bats (ERBs), which caused an acute febrile illness in a reported human case in Africa, has increased the focus on the zoonotic potential of the subfamily. Previous studies identified human parainfluenza virus 2 (HPIV2)- and mumps (MuV)-related viruses in ERBs from South Africa, with HPIV2-related viruses restricted to gastrointestinal samples, an underexplored target for rubulavirus biosurveillance, suggesting that sample-type bias may have led to their oversight. To address this, we performed a longitudinal analysis of population-level fecal samples from an ERB maternity roost for rubulavirus RNA, employing a broadly reactive hemi-nested RT-PCR assay targeting the polymerase gene. We detected HPIV2- and MuV-related viruses in addition to numerous pararubulaviruses, highlighting significant viral diversity. Temporal analysis of three major clades revealed peaks in rubulavirus shedding that correlated with seasonal environmental changes and host reproductive cycles, although shedding patterns varied between clades. These findings identify specific periods of increased risk for the spillover of bat-associated rubulaviruses to humans, providing critical information for developing targeted mitigation strategies to minimize zoonotic transmission risk within the local community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms12122505 | DOI Listing |
Microorganisms
December 2024
Centre for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
Bats are recognized as reservoirs for diverse paramyxoviruses, some of which are closely related to known human pathogens or directly implicated in zoonotic transmission. The emergence of the zoonotic Sosuga virus (SOSV) from Egyptian rousette bats (ERBs), which caused an acute febrile illness in a reported human case in Africa, has increased the focus on the zoonotic potential of the subfamily. Previous studies identified human parainfluenza virus 2 (HPIV2)- and mumps (MuV)-related viruses in ERBs from South Africa, with HPIV2-related viruses restricted to gastrointestinal samples, an underexplored target for rubulavirus biosurveillance, suggesting that sample-type bias may have led to their oversight.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA.
Front Microbiol
November 2024
Laboratory of Animal Molecular Virology, Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
The last 60 years have seen the emergence of several zoonotic viruses, some of which originate from bats. Among these are Nipah virus, Marburg virus and Ebola viruses, which have high case fatality rates, and pose significant public health risks. In 2012, another zoonotic paramyxovirus from bats, known as Sosuga Virus (SOSV), was discovered in a hospitalized biologist who had returned from a trip to Africa.
View Article and Find Full Text PDFViruses
July 2024
Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa.
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding.
View Article and Find Full Text PDFViruses
April 2024
Department of Biological Sciences, Njala University, Njala, Sierra Leone.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!