Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants. The N:P ratio increased the α-diversity of the RS bacterial community and changed the structure of the BS bacterial community. P addition may increase the threshold, causing decreased α-diversity of the bacterial community. The co-occurrence network of the RS community is more complex, but it is more fragile than that of BS. The co-occurrence network in BS has more modules and fewer network hubs. The increased N:P ratio can increase chemoheterotrophy and denitrification processes in the RS bacterial community, while the N:P ratio can decrease the N-fixing processes and increase the nitration processes. The response of the BS and the RS bacterial community to the N:P ratio differed, as influenced by soil organic carbon (SOC) content in terms of diversity, community composition, mutualistic networks, and functional composition. This study demonstrates that the effect of the N:P ratio on soil bacterial community is different for plant roots and emphasizes the role of plant roots in shaping soil bacterial community during environmental change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms12122419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!