Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs). In recent years, research has shown that microbial biofilms, developed on carriers of different materials and called "moving bed biofilm reactors" (MBBRs), may offer promising solutions for bioremediation. This study explored the biofilm development and the nitrification process of moving bed biofilms (MBBs) obtained from high ammonia-selected microbial communities. Using crystal violet staining and confocal laser-scanning microscopy, we followed the biofilm formation stages correlating nitrogen removal to metagenomic analyses. Our results indicate that MBBs unveiled a 10-fold more enhanced nitrification rate than the dispersed microbial community present in the native sludge of the Porto Sant'Elpidio (Italy) WWTP. Four bacterial families, Chitinophagaceae, Comamonadaceae, Sphingomonadaceae, and Nitrosomonadaceae, accumulate in structured biofilms and significantly contribute to the high ammonium removal rate of 80% in 24 h as estimated in leachate-containing wastewaters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms12122404 | DOI Listing |
Microorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Biomedical Signals and Systems Group, University of Twente, 7522 NB Enschede, The Netherlands.
Background/objectives: Measuring the physical functioning of older hip fracture patients using wearables is desirable, with physical activity monitoring offering a promising approach. However, it is first important to assess physical activity in healthy older adults. This study quantifies physical functioning with physical activity parameters and assesses those parameters in community-dwelling older adults.
View Article and Find Full Text PDFWater Sci Technol
December 2024
Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China; Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing 210000, China.
Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.
View Article and Find Full Text PDFWater Res
December 2024
Faculty of Engineering, Institute of Environmental and Process Engineering, RheinMain University of Applied Sciences, Wiesbaden, Germany.
Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei, 230036, PR China. Electronic address:
Advanced operational moving bed biofilm reactor (MBBR) has demonstrated to achieve simultaneous sludge yield minimization and pollutants removal. However, effect of different metal ions on MBBR performance for nutrients removal in wastewater under low carbon to nitrogen ratio is still unclear. Fate of NH-N and NO-N by MBBR were explored under the influence of Mn(II), Cu(II), and Fe(II) at carbon to nitrogen ratio of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!