A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conservation and Dynamics of Maize Seed Endophytic Bacteria Across Progeny Transmission. | LitMetric

Conservation and Dynamics of Maize Seed Endophytic Bacteria Across Progeny Transmission.

Microorganisms

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.

Published: November 2024

Maize ( L.) is an important cereal crop species for food, feedstock and industrial material. Maize seeds host a suitable ecosystem for endophytic bacteria, facilitating seed germination and seedling growth. However, the inheritance, diversity and potential function of seed endophytic bacteria in maize remain largely unexplored. In this study, the endophytic bacteria in the seeds of maize inbred line WU109 collected during three consecutive seasons were identified using 16S rDNA sequencing. Core community composition was essentially consistent across three seed generations and two planting locations. In total, 212 operational taxonomic units (OTUs) belonging to 11 phyla were identified, among which proteobacteria was the dominant phylum. Fifty-six OTUs were conserved across three seed generations. Within them, 16 OTUs were core components and the dominant OTUs were , , and , accounting for 60% of the total abundance of OTUs. COG and KEGG analyses showed that the function of seed endophytic bacteria was mainly enriched in metabolic processes, especially in amino acid, carbohydrate and energy metabolism. Taken together, the results suggested that the community of maize seed endophytic bacteria was likely co-shaped by both genetic determination and the environment, while the core constitutes of seed endophytes were largely conserved due to transgenerational transmission. Establishing the mutualistic link between the maize seed and its endophytic bacteria enables the exploitation of the potential of endophytes for enhancing crop production. This finding provides a reference to better understand the inheritance and composition of seed core endophytic bacteria in maize.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms12122399DOI Listing

Publication Analysis

Top Keywords

endophytic bacteria
32
seed endophytic
20
maize seed
12
seed
10
maize
8
endophytic
8
bacteria
8
function seed
8
bacteria maize
8
three seed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!