A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ANN-QSAR, Molecular Docking, ADMET Predictions, and Molecular Dynamics Studies of Isothiazole Derivatives to Design New and Selective Inhibitors of HCV Polymerase NS5B. | LitMetric

RNA polymerase (NS5B), serves as a crucial target for pharmaceutical interventions aimed at combating the hepatitis C virus (HCV), which poses significant health challenges worldwide. The present research endeavors to explore and implement a variety of advanced molecular modeling techniques that aim to create and identify innovative and highly effective inhibitors that specifically target the RNA polymerase enzyme. In this study, a QSAR investigation was carried out on a set of thirty-eight isothiazole derivatives targeting NS5B inhibition and thus hepatitis C virus (HCV) treatment. The research methodology made use of various statistical techniques including multiple linear regression (MLR) and artificial neural networks (ANNs) to develop satisfactory models in terms of internal and external validation parameters, indicating their reliability in predicting the activity of new inhibitors. Accordingly, a series of potent NS5B inhibitors is designed, and their inhibitory potential is confirmed through molecular docking simulations. These simulations showed that the interactions between these inhibitors and the active site 221 binding pocket of the NS5B protein are hydrophobic and hydrogen bond interactions, as well as carbon-hydrogen bonds and electrostatic interactions. Additionally, these newly formulated compounds displayed favorable ADMET characteristics, with molecular dynamics investigations revealing a stable energetic state and dynamic equilibrium. Our work highlights the importance of NS5B inhibition for the treatment of HCV.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph17121712DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
molecular dynamics
8
isothiazole derivatives
8
polymerase ns5b
8
rna polymerase
8
hepatitis virus
8
virus hcv
8
ns5b inhibition
8
ns5b
6
inhibitors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!