A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liposomal and Nanostructured Lipid Nanoformulations of a Pentacyclic Triterpenoid Birch Bark Extract: Structural Characterization and In Vitro Effects on Melanoma B16-F10 and Walker 256 Tumor Cells Apoptosis. | LitMetric

: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch () outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. : Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions. The composition, morphology, and sizes of all nanoformulations were checked by high-performance liquid chromatography/mass spectrometry, Transmission Electronic Microscopy, and Diffraction Light Scattering. The entrapment efficiency and its impact on cell viability, cell cycle arrest, and apoptosis by flow cytometry was also measured on both cancer cell lines. The standardized TTs, including betulin, lupeol, and betulinic acid, showed good stability and superior activity compared to pure betulinic acid. According to experimental data, TTs showed good entrapment in liposomal and NLC nanoformulations, both delivery systems including natural, biodegradable ingredients and enhanced bioavailability. The apoptosis and necrosis effects were more pronounced for TTs liposomal formulations in both types of cancer cells, with lower cytotoxicity compared to Doxorubicin, and can be correlated with their increased bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph17121630DOI Listing

Publication Analysis

Top Keywords

betulinic acid
12
liposomal nanostructured
8
nanostructured lipid
8
melanoma b16-f10
8
b16-f10 walker
8
anticancer agents
8
tts
6
liposomal
4
lipid nanoformulations
4
nanoformulations pentacyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!