Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural and synthetic biopolymers are gaining popularity in the development of inhaled drug formulations. Their highly tunable properties and ability to sustain drug release allow for the incorporation of attributes not achieved in dry powder inhaler formulations composed only of micronized drugs, standard excipients, and/or carriers. There are multiple physiological barriers to the penetration of inhaled drugs to the epithelial surface, such as the periciliary layer mucus mesh, pulmonary macrophages, and inflammation and mucus compositional changes resulting from respiratory diseases. Biopolymers may facilitate transport to the epithelial surface despite such barriers. A variety of categories of biopolymers have been assessed for their potential in inhaled drug formulations throughout the research literature, ranging from natural biopolymers (e.g., chitosan, alginate, hyaluronic acid) to those synthesized in a laboratory setting (e.g., polycaprolactone, poly(lactic-co-glycolic acid)) with varying structures and compositions. To date, no biopolymers have been approved as a commercial dry powder inhaler product. However, advances may be possible in the treatment of respiratory diseases and infections upon further investigation and evaluation. Herein, this review will provide a thorough foundation of reported research utilizing biopolymers in dry powder inhaler formulations. Furthermore, insight and considerations for the future development of dry powder formulations will be proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ph17121628 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!