Ovarian cancer has the highest mortality rate in the world. Treatment methods are listed as surgery, chemotherapy, and radiotherapy, depending on the stage of cancer, but developing resistance to chemotherapy increases the need for alternative agents that act on the same pathways. The effects of rosmarinic acid (RA) and doxorubicin (DX) on the activation of FOXP3, an important tumor suppressor gene, in OVCAR3 cells were examined. In this study, a human ovarian adenocarcinoma cell line was used. MTT analysis was performed to reveal the result of RA and DX on ovarian cancer cell proliferation. Expression levels of FOXP3 for cell proliferation and Capase-3 for apoptosis were determined by RT-qPCR. The wound healing model was applied to determine cell migration rates. The results were evaluated with one-way ANOVA in an SPSS 20.0 program as ≤ 0.05. It was determined that RA and DX alone and in combination inhibited the proliferation of OVCAR3 cells in different doses for 24, 48, and 72 h, and caused the cells to die by causing them to undergo apoptosis. Caspase-3 expression increased approximately tenfold in OVCAR3 cells, while FOXP3 expression was upregulated only in RA treatment and was downregulated in DX and RA + DX treatments. According to the results of our study, it was determined that the FOXP3 signaling pathway related to apoptosis, and proliferation was affected by the combination treatment of RA and DX in the OVCAR3 cancer cell line. This shows that RA will gain an important place in cancer treatment with more comprehensive study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676701PMC
http://dx.doi.org/10.3390/ph17121606DOI Listing

Publication Analysis

Top Keywords

ovcar3 cells
16
rosmarinic acid
8
acid doxorubicin
8
ovarian cancer
8
cancer cell
8
cell proliferation
8
ovcar3
5
cells
5
cancer
5
cell
5

Similar Publications

Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.

View Article and Find Full Text PDF

Aim: Ovarian cancer (OC) is a fatal female malignant tumor that severely impacts the health of women worldwide. Due to the lack of diagnostic biomarkers, 70% of OC patients are considered in the advanced stage at the first diagnosis. Exploring novel biomarkers for OC diagnosis has become an urgent clinical need to address.

View Article and Find Full Text PDF

Ovarian cancer has the highest mortality rate in the world. Treatment methods are listed as surgery, chemotherapy, and radiotherapy, depending on the stage of cancer, but developing resistance to chemotherapy increases the need for alternative agents that act on the same pathways. The effects of rosmarinic acid (RA) and doxorubicin (DX) on the activation of FOXP3, an important tumor suppressor gene, in OVCAR3 cells were examined.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of Sparstolonin B (SsnB) on cell proliferation and apoptosis in human breast cancer (MCF-7) and human ovarian epithelial cancer (OVCAR-3) cell lines in the presence and absence of estradiol hemihydrate (ES). Phosphoinositol-3 kinase (PI3K), phosphorylated protein kinase B alpha (p-AKT), phosphorylated mTOR (mechanistic target of rapamycin) signaling proteins, and sphingomyelin/ceramide metabolites were also measured within the scope of the study. The anti-proliferative effects of SsnB therapy were evaluated over a range of times and concentrations.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma (HGSOC) remains the most common and deadly form of ovarian cancer. However, available cell lines usually fail to appropriately represent its complex molecular and histological features. To overcome this drawback, we established OVAR79, a new cell line derived from the ascitic fluid of a patient with a diagnosis of HGSOC, which adds a unique set of properties to the study of ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!