Background: Tetrahydrocannabivarin (THCV) is a phytocannabinoid commonly found in cannabis with potential pharmacological properties; however, its post-acute pharmacokinetics (PK) in humans have not been studied yet. THCV has two isomers, Δ9- and Δ8-THCV, which seem to have different pharmacological properties. We investigated the PK of the Δ8-THCV isomer after oral administration as part of a two-phase, dose-ranging, placebo-controlled trial in healthy participants.

Methods: Participants ( = 21) were enrolled in six study sessions and randomly received the following doses of a medium-chain triglyceride (MCT) oil oral formulation of Δ8-THCV: placebo, 12.5 mg, 25 mg, 50 mg, 100 mg, and 200 mg. Plasma samples from 15 participants were collected up to 8 h after administration and were analyzed by a validated two-dimensional high-performance liquid chromatography-tandem mass spectrometry assay. The trial was registered on clinicaltrials.gov (NCT05210634).

Results: After oral administration, 11-nor-9-carboxy-Δ8-THCV (Δ8-THCV-COOH) was the main metabolite detected. The median time-to-maximum concentration (t) ranged 3.8-5.0 h across doses for Δ8-THCV and 4.6-5.3 h for Δ8-THCV-COOH. The maximum concentration (C) and area under the concentration-time curve over the observation period (AUC) appeared to be dose-linear. Median AUC increased 2.3- to 4.8-fold and 1.7- to 2.9-fold for Δ8-THCV and Δ8-THCV-COOH, respectively, every two-fold increase in the dose. The isomers Δ9-THCV and Δ9-THCV-COOH were detected in plasma, despite being undetected in the formulated drug product analyzed by a third-party laboratory.

Conclusions: For the first time, we report the pharmacokinetics of Δ8-THCV and its major metabolites after oral administration in humans. Δ8-THCV AUC showed dose linearity but the observed possible conversion to the Δ9-THCV isomer should be further studied.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph17121603DOI Listing

Publication Analysis

Top Keywords

oral administration
12
pharmacological properties
8
Δ8-thcv
7
pharmacokinetics oral
4
oral cannabinoid
4
cannabinoid Δ8-tetrahydrocannabivarin
4
Δ8-tetrahydrocannabivarin main
4
main metabolites
4
metabolites healthy
4
healthy participants
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Suven Life Sciences, Hyderabad, Telangana, India.

Background: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: The accumulation of amyloidogenic proteins is recognized as a primary biomarker, initiator of pathology, and a potential therapeutic target for Alzheimer's disease (AD). An unbiased screening of a small molecule library was conducted to identify new chemical compounds exhibiting amyloid-dissociative properties.

Method: The ability of aryloxypropanolamine derivatives to dissociate amyloid-β (Aβ) aggregates was evaluated through in vitro assays.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Merry Life Biomedical Company, Ltd., Tainan City, Taiwan, Taiwan.

Background: Alzheimer's disease (AD) is complex in pathogenesis and related to aging biology, especially in late-onset AD. We identified a novel synthetic curcumin analog TML-6 through the platform of 6 biomarkers of anti-aging, anti-inflammation, and anti-Aβ as the potential AD drug candidate. TML-6 exhibits multi-target effects on AD pathogenesis, including the activation of NrF-2, the regulation of autophagic machinery through mTOR, the inhibition of APP synthesis and reduction of Aβ, the upregulation of ApoE, and the inhibition of microglial activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!