Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ph17121593 | DOI Listing |
J Nat Prod
January 2025
Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
Inspired by our previous efforts in the semisynthetic modification of naturally occurring pyranoacridones, we report the targeted design and semisynthesis of dual inhibitors of HDAC and topoisomerase II α (Topo II α) derived from des--methylacronycine () and noracronycine () pyranoacridone alkaloids. Designed from the clinically approved SAHA, the cytotoxic pyranoacridone nuclei from the alkaloids served as the capping group, while a hydroxamic acid moiety functioned as the zinc-binding group. Out of 16 compounds evaluated in an cytotoxicity assay, KT32 () with noracronycine () as the capping group and five-carbon linker hydroxamic acid side chains showed good cytotoxic activity with IC values of 1.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania.
Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly.
View Article and Find Full Text PDFMolecules
December 2024
Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5-indeno[2,1-]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF·EtO. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-]quinolin-7-one phosphine oxides .
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy.
Targeting DNA damage response (DDR) pathways represents one of the principal approaches in cancer therapy. However, defects in DDR mechanisms, exhibited by various tumors, can also promote tumor progression and resistance to therapy, negatively impacting patient survival. Therefore, identifying new molecules from natural extracts could provide a powerful source of novel compounds for cancer treatment strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!