Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published. The murine model of experimental cerebral malaria (ECM) shares many common features with the human disease and has been extensively used to study the pathogenic mechanisms of the neurological syndrome. In vivo MRI studies on this model, the first of which was published in 2005, have contributed to a better understanding of brain lesion formation in CM and identified disease markers that were confirmed by MRI studies published from 2013 onwards in pediatric patients from endemic areas. In this review, we recapitulate the main findings and critically discuss the contributions of MRI studies in the ECM model to the understanding of human CM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728472 | PMC |
http://dx.doi.org/10.3390/pathogens13121042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!