The poor prognosis of infections associated with multidrug-resistant can be attributed to several conditions of the patient and virulence factors of the pathogen, such as the type III secretion system (T3SS), which presents the ability to inject four effectors into the host cell: ExoS, ExoT, ExoU and ExoY. The aim of this study was to analyze the distribution of genes through multiplex polymerase chain reaction in strains isolated from patients at a third-level pediatric hospital and their relationships with clinical variables, e.g., the origin of the sample, susceptibility profile and outcome, through a multinomial logistic regression model. A total of 336 bacterial strains were obtained from cystic fibrosis (CF; n = 55) and bloodstream infection (BSI; n = 281) samples, and eleven presence (+)/absence (-) virulotype patterns were identified. The virulotype V3 () was observed in 64.28%, followed by V1 () with 11.60%. Additionally, V2 () was present in 11.60%, and V7 () was present in 4.17%. The remaining virulotypes (8.33%) identified were clustered in the other virulotype (OV) group (V4, V5, V6, V8, V9, V10 and V11). The clinical records of 100 patients and their outcomes were reviewed. Fifteen patients died (CF = 4; BSI = 11). V2 and V1 were the virulotypes most related to pandrug resistance (PDR), whereas the V1 relative risk of death was determined to be almost four-fold greater than that of V3, followed by V2 and OV. In summary, the virulotypes V1, V2 and CF are related to death. This study highlights the association of T3SS virulotypes with the susceptibility profile, clinical origin and their potential for predicting a poor prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/pathogens13121030DOI Listing

Publication Analysis

Top Keywords

secretion system
8
poor prognosis
8
susceptibility profile
8
virulotypes
5
virulotypes type
4
type secretion
4
system multidrug
4
multidrug resistant
4
resistant death
4
death risk
4

Similar Publications

Role of T cell metabolism in brain tumor development: a genetic and metabolic approach.

BMC Neurol

January 2025

Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.

Background: Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating immune responses within the tumor microenvironment.

View Article and Find Full Text PDF

Premetastatic cancer cells often spread from the primary lesion through the lymphatic vasculature and, clinically, the presence or absence of lymph node metastases impacts treatment decisions. However, little is known about cancer progression via the lymphatic system or of the effect that the lymphatic environment has on cancer progression. This is due, in part, to the technical challenge of studying lymphatic vessels and collecting lymph fluid.

View Article and Find Full Text PDF

Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.

View Article and Find Full Text PDF

β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus.

Nat Immunol

January 2025

Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.

Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.

View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!