Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary. Herein, a novel electrochemical sensor for BPA detection based on [(5,10,15,20-tetrakis(p-bromophenyl) porphyrinato] cadmium (II) [(CdTBrPP)] and gold nanoparticle (AuNPs)-modified screen-printed carbon electrode (SPCE) was elaborated. CdTBrPP was synthesized and then characterized with Ultraviolet-Visible Spectroscopy (UV/vis), Infrared Spectroscopy (IR), and Proton Nuclear Magnetic Resonance Spectroscopy (H NMR) to confirm its successful synthesis. After drop-coating AuNPs and CdTBrPP on the SPCE, the sensor performance was evaluated using square wave voltammetry (SWV), a linear response in a concentration range from 10 M to 10 M, with a low detection limit (LOD) of 9.5 pM. The CdTBrPP/AuNPs/SPCE sensor demonstrates a high selectivity and reproducibility, making it a promising candidate for developing a low-cost water-monitoring system for detecting BPA. Additionally, the proposed sensor effectively detected BPA in both tap and mineral water samples.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi15121508DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
detection based
8
sensor
5
bpa
5
selective electrochemical
4
sensor bisphenol
4
bisphenol detection
4
based cadmium
4
cadmium bromophenylporphyrin
4
bromophenylporphyrin gold
4

Similar Publications

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Levels of CA125 are strongly associated with cervical, pancreatic, bowel and breast cancer. However, the common CA125 detection method has the disadvantages of poor repeatability, high cost, easy to be disturbed and poor stability. In this work, a COF based electrochemical immunosensor was developed for the rapid, sensitive and stable detection of CA125.

View Article and Find Full Text PDF

Microsensor systems for cell metabolism - from 2D culture to organ-on-chip (2019-2024).

Lab Chip

January 2025

Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.

Cell cultures, organs-on-chip and microphysiological systems become increasingly relevant as models, , in drug development, disease modelling, toxicology or cancer research. It has been underlined repeatedly that culture conditions and metabolic cues have a strong or even essential influence on the reproducibility and validity of such experiments but are often not appropriately measured or controlled. Here we review microsensor systems for cell metabolism for the continuous measurement of culture conditions in microfluidic and lab-on-chip platforms.

View Article and Find Full Text PDF

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!