Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin-carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) for dimensionality reduction, the Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation, and the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms for classification. PCA improved KNN and SVM classification, boosting the Area Under the Curve (AUC) scores by 15.7% and 25.2%, respectively. SMOTE increased KNN's accuracy by 2.1%, preserving data structure better than polynomial fitting. The results demonstrate a scalable approach to enhancing classification accuracy under data constraints. This approach shows promise for expanding gas sensor applicability in fields where data limitations previously restricted reliability and effectiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi15121501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!