Micro- and nanoplastics have become increasingly relevant as contaminants to be monitored due to their potential health effects and environmental impact. Nanoplastics, in particular, have been shown to be difficult to detect in drinking water, requiring new capture technologies. In this work, we applied the acoustofluidic seed particle method to capture nanoplastics in an optimized, tilted grid of silica clusters even at the high flow rate of 5 mL/min. Moreover, we achieved, using this technique, the enrichment of nanoparticles ranging from 500 nm to 25 nm as a first in the field. We employed fluorescence to observe the enrichment profiles according to size, using a washing buffer flow at 0.5 mL/min, highlighting the size-dependent nature of the silica seed particle release of various sizes of nanoparticles. These results highlight the versatility of acoustic trapping for a wide range of nanoplastic particles and allow further study into the complex dynamics of the seed particle method at these size ranges. Moreover, with reproducible size-dependent washing curves, we provide a new window into the rate of nanoplastic escape in high-capacity acoustic traps, relevant to both environmental and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi15121487 | DOI Listing |
Food Res Int
January 2025
Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.
View Article and Find Full Text PDFAstrobiology
January 2025
Institute of Environmental System Biology, Dalian Maritime University, Dalian, China.
The Space Radiobiological Exposure Facility (SREF) is a general experimental facility at the China Space Station for scientific research in the fields of space radiation protection, space radiation biology, biotechnology, and the origin of life. The facility provides an environment with controllable temperatures for experiments with organic molecules and model organisms such as small animals, plant seeds, and microorganisms. The cultivation of small animals can be achieved in the facility with the use of microfluidic chips and images and videos of such experiments can be captured by microscopy.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), PO Box 15551, Al-Ain, United Arab Emirates. Electronic address:
Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical engineering, Military Technical College, Cairo, Egypt.
This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!