We synthesized n-type polymers poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)] and poly{[N,N'-bis(3-(4-cardanol)propyl)-naphthalene-1,4,5,8-tetracarboxylic diimide]-alt-[5,5'-bis(2-thienyl)-2,2'-bithiophene]} [P(NDICL-T2)] with cardanol-based side chains via Stille coupling to enhance electron mobility. Replacing the 2-octyldodecyl side chain with cardanol in P(NDICL-T2) improved electron mobility due to increased chain flexibility and ordered packing. Lower glass transition temperature (), red-shifted UV-vis absorption, results from crystalline structure analysis, indicating tighter lamellar spacing and enhanced molecular ordering, and smoother surface morphology confirmed the enhanced intermolecular interactions and uniform film formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi15121475 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.
Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
We synthesized n-type polymers poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)] and poly{[N,N'-bis(3-(4-cardanol)propyl)-naphthalene-1,4,5,8-tetracarboxylic diimide]-alt-[5,5'-bis(2-thienyl)-2,2'-bithiophene]} [P(NDICL-T2)] with cardanol-based side chains via Stille coupling to enhance electron mobility. Replacing the 2-octyldodecyl side chain with cardanol in P(NDICL-T2) improved electron mobility due to increased chain flexibility and ordered packing. Lower glass transition temperature (), red-shifted UV-vis absorption, results from crystalline structure analysis, indicating tighter lamellar spacing and enhanced molecular ordering, and smoother surface morphology confirmed the enhanced intermolecular interactions and uniform film formation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Materials, University of Oxford, Parks Road, Oxford, UK.
The Selective Metallization Technique shows promise for roll-to-roll in-line patterning of flexible electronics using evaporated metals, but challenges arise when applied to sputtering functional materials. This study overcomes these challenges with simultaneous sputtering of Bi-Sb-Te and evaporation of metal (Ag or Cu) for thermoelectric layers when using Selective Metallization Technique. Large-scale manufacturing is demonstrated through roll-to-roll processing of a 0.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!