A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Deformation of a Liquid Metal Droplet Under Continuous Acceleration in a Variable Cross-Section Groove. | LitMetric

The Deformation of a Liquid Metal Droplet Under Continuous Acceleration in a Variable Cross-Section Groove.

Micromachines (Basel)

School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China.

Published: December 2024

This paper constructs a numerical simulation model for the deformation of droplets in a variable cross-section groove of a liquid droplet MEMS switch under different directions, amplitudes, frequencies, and waveforms of acceleration. The numerical simulation utilizes the level set method to monitor the deformation surface boundary of the metal droplets. The simulation outcomes manifest that when the negative impact acceleration on the -axis is 12.9 m/s, the negative impact acceleration on the -axis is 90 m/s, the negative impact acceleration on the -axis is 34.5 m/s, and the metal droplet interfaces with the metal electrode. The droplet deformation under the effect of a sine wave acceleration signal in the X and Y directions is lower than that under impact acceleration, while in the Z direction, the deformation is higher than that under impact acceleration. The deformation of metal droplets under square wave acceleration is more pronounced than that under sinusoidal wave acceleration. The deformation escalates with the augmentation in square wave amplitude and dwindles with the reduction in square wave acceleration frequency. Furthermore, there exists a phase difference between the deformation curve of the metal droplet and the continuous acceleration signal curve, and the phase difference is dependent of the material properties of the metal droplet. This work elucidates the deformation of the liquid-metal droplets under continuous acceleration and furnishes the foundation for the continuous operation design of MEMS droplet switches.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi15121472DOI Listing

Publication Analysis

Top Keywords

impact acceleration
20
metal droplet
16
wave acceleration
16
acceleration
13
continuous acceleration
12
negative impact
12
acceleration -axis
12
square wave
12
deformation
9
droplet continuous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!