Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications.

Micromachines (Basel)

Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Published: November 2024

Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility. This review investigates the diverse propulsion mechanisms employed in MNRs, including magnetic, electric, light, and biological forces, which enable efficient navigation in various fluidic environments. The interplay between the synthesis and propulsion mechanisms of MNRs in the development of colorimetric and fluorescence detection platforms is emphasized. Additionally, we summarize the recent advancements in MNRs as sensing and biosensing platforms, particularly focusing on colorimetric and fluorescence-based detection systems. By utilizing the controlled motion of MNRs, dynamic changes in the fluorescent signals and colorimetric responses can be achieved, thereby enhancing the sensitivity and selectivity of biomolecular detection. This review highlights the transformative potential of MNRs in sensing applications and emphasizes their role in advancing diagnostic technologies through innovative motion-driven signal transduction mechanisms. Subsequently, we provide an overview of the primary challenges currently faced in MNR research, along with our perspective on the future applications of MNR-assisted colorimetric and fluorescence biosensing in chemical and biological sensing. Moreover, issues related to enhanced stability, biocompatibility, and integration with existing detection systems are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi15121454DOI Listing

Publication Analysis

Top Keywords

colorimetric fluorescence
12
propulsion mechanisms
8
mnrs sensing
8
detection systems
8
mnrs
7
colorimetric
5
advances micro-
4
micro- nanorobot-assisted
4
nanorobot-assisted colorimetric
4
fluorescence platforms
4

Similar Publications

Fluorescent microsphere-based strip for sensitive and quantitative detection of etomidate and metomidate.

Analyst

January 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.

In this research, we fabricated a sensitive monoclonal antibody (mAb) 2C3 that targeted etomidate (ET) and metomidate (MT) to establish a lateral-flow immunoassay (LFIA) that incorporated fluorescent microsphere sensors, enabling both the qualitative and quantitative detection of ET and MT within 10 min. Analysis indicated that the visual colorimetric values for ET and MT in water samples were 0.3 μg kg, respectively, with quantitative detection ranges of 0.

View Article and Find Full Text PDF

Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.

View Article and Find Full Text PDF

Liquid biopsy is an efficient diagnostic/prognostic tool for tumor-derived component detection in peripheral circulation and other body fluids. The rapid assessment of liquid biopsy techniques facilitates early cancer diagnosis and prognosis. Early and precise detection of tumor biomarkers provides crucial information about the tumor that guides clinicians towards effective personalized medicine.

View Article and Find Full Text PDF

Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications.

Micromachines (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility.

View Article and Find Full Text PDF

Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!