Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential. This study investigates the wettability transition of laser-textured anisotropic surfaces featuring shark skin-inspired microstructures using four post-processing methods: spray coating, isopropyl alcohol (IPA) treatment, silicone oil treatment, and silanization. The impact of each method on surface wettability was assessed through water contact angle measurements, scanning electron microscopy (SEM), and laser scanning microscopy. The results show a transition from superhydrophilic behavior on untreated laser-textured surfaces to various (super)hydrophobic states following surface treatment. Chemical treatments produced different levels of hydrophobicity and anisotropy, with silanization achieving the highest hydrophobicity and long-term stability, persisting for one year post-treatment. This enhancement is attributed to the low surface energy and chemical properties of silane compounds, which reduce surface tension and increase water repellence. In conclusion, this study demonstrates that post-processing techniques can effectively tailor surface wettability, enabling a wide range of wetting properties with significant implications for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi15121442 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
The development of affordable, intelligent dual-separation technology is crucial for the treatment of oil-water mixtures. Pyridinium-based poly(ionic liquid)s (PILs), designed using molecular theory, exhibit unique switching wettability properties, making them ideal for use in both aqueous and oily environments. By prewetting the material's surface with water or oil, the targeted separation of these components becomes feasible.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
UMR1114 EMMAH INRAE-AU, 228, Route de L'Aérodrome, Avignon, F84000, France. Electronic address:
Hypothesis: Water drop infiltration into a thin amphiphilic porous medium is influenced by wettability. Due to the reorganization of amphiphilic matter in contact with water, polar interaction changes the wettability in the bulk porous medium and at the liquid/porous substrate interface. To model out of equilibrium water transfer, we propose a thermodynamics approach derived from Onsager's principle.
View Article and Find Full Text PDFSci Rep
January 2025
Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, 62521, Egypt.
Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.
View Article and Find Full Text PDFEye Contact Lens
November 2024
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
Objectives: To evaluate the impact of scleral contact lens (SL) wear on the visual quality and the ocular surface wettability in myopic patients with regular corneas.
Methods: This prospective, randomized, controlled study enrolled a total of 80 myopes with regular corneas. Subjects were randomly allocated to wear SL or rigid corneal lens (RCL) for 3 months.
Langmuir
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2461 Yamazaki Noda, Chiba 278-8510, Japan.
The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!