Over the past 30 years, researchers have developed X-ray-focusing telescopes by employing the principle of total reflection in thin metal films. The Wolter-I focusing mirror with variable-curvature surfaces demands high precision. However, there has been limited investigation into the removal mechanisms for variable-curvature X-ray mandrels, which are crucial for achieving the desired surface roughness and form accuracy, especially in reducing mid-spatial frequency (MSF) errors. It is essential to incorporate flexible control in deterministic small-tool polishing to improve the tool's adaptability to curvature variations and achieve stable, Gaussian-like tool influence functions (TIFs). In this paper, we introduce a curvature-adaptive prediction model for compliance figuring, based on the Preston hypothesis, using a compliant shaping tool with high slurry absorption and retention capabilities. This model predicts the compliance figuring process of variable-curvature symmetrical mandrels for X-ray grazing incidence mirrors by utilizing planar tool influence functions. Initially, a variable-curvature pressure model was developed to account for the parabolic and hyperbolic optical surfaces' curvature characteristics. By introducing time-varying removal functions for material removal, the model establishes a variable-curvature factor function, which correlates actual downward pressure with parameters such as contact radius and contact angle, thus linking the variable-curvature surface with a planar reference. Subsequently, through analysis of the residence time distribution across different TIF models, hierarchical filtering, and PSD distribution, real-time correction of the TIFs was achieved to enable customized variable-curvature polishing. Furthermore, by applying a time-varying deconvolution algorithm, multiple rounds of flexible polishing iterations were conducted on the mandrels of a rotationally symmetric variable-curvature optical component, and the experimental results demonstrate a significant improvement in form accuracy, surface quality, and the optical performance of the mirror.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi15121415 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
Thermoelectric technology plays an important role in developing sustainable clean energy and reducing carbon emissions, offering new opportunities to alleviate current energy and environmental crises. Nowadays, GeTe has emerged as a highly promising thermoelectric candidate for mid-temperature applications, due to its remarkable thermoelectric figure of merit () of 2.7.
View Article and Find Full Text PDFPLoS One
January 2025
Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt-Macromolecular Complexes (CEF-MC), Goethe-Universität-Frankfurt am Main (Campus Riedberg), Frankfurt am Main, Germany.
Comparative studies across multiple species provide valuable insights into the evolutionary diversification of developmental strategies. While the fruit fly Drosophila melanogaster has long been the primary insect model organism for understanding molecular genetics and embryonic development, the Mediterranean fruit fly Ceratitis capitata, also known as medfly, presents a promising complementary model for studying developmental biology. With its sequenced genome and a diverse array of molecular techniques, the medfly is well-equipped for study.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
In this paper, a sub-1dB Low Noise Amplifier (LNA) with several gain modes, including amplification and attenuation modes required for the fifth and fourth generations (5G/4G) of mobile network applications, is proposed. Its current consumption is adaptive for every gain mode and varies to lower currents for lower amplifications due to the importance of current consumption for mobile network applications. The proposed LNA features an innovative architecture with a three-core input structure supporting multi-gain modes, achieving high gain and ultra-low noise performance.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China.
Over the past 30 years, researchers have developed X-ray-focusing telescopes by employing the principle of total reflection in thin metal films. The Wolter-I focusing mirror with variable-curvature surfaces demands high precision. However, there has been limited investigation into the removal mechanisms for variable-curvature X-ray mandrels, which are crucial for achieving the desired surface roughness and form accuracy, especially in reducing mid-spatial frequency (MSF) errors.
View Article and Find Full Text PDFBiomedicines
December 2024
World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia.
Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!