The N-methyl-D-aspartate (NMDA) glutamate receptor is a major target of ethanol, and it is implicated in learning and memory formation, and other cognitive functions. Glycine acts as a co-agonist for this receptor. We examined whether Org24598, a selective inhibitor of glycine transporter1 (GlyT1), affects ethanol withdrawal-induced deficits in recognition memory (Novel Object Recognition (NOR) task) and spatial memory (Barnes Maze (BM) task) in rats, and whether the NMDA receptor glycine site participates in this phenomenon. Male Wistar rats were habituated to NOR or BM tasks, and then received binge-like intragastric ethanol administration (5 days, 5 g/kg). After ethanol withdrawal, Org24598 (0.1, 0.3, and 0.6 mg/kg) was administered 30 min before NOR (day 10 of withdrawal) or the reversal learning phase of BM (day 11-13 of withdrawal) task. The expression of GluN1 and GluN2B subunits of NMDA receptors were measured in the perirhinal cortex (PRC) and hippocampus (HIP) after termination of NOR. In the BM task, a glycine antagonist, L-701,324 (5 mg/kg), was administered 30 min before Org24598 to confirm the involvement of the NMDA receptor glycine site in the effects of Org24598. Our study showed that binge-like ethanol administration induced recognition and spatial memory impairments after withdrawal in rats. Additionally, an up-regulation of GluN1 and GluN2B subunits of the NMDA receptor was observed in the HIP and PRC on day 11 of abstinence. Org24598 ameliorated memory loss and normalized the expression of these subunits. L-701,324 reversed the effect of Org24598. Thus, NMDA receptor glycine sites are important in ethanol withdrawal-induced memory impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules29246017 | DOI Listing |
Nonketotic hyperglycinemia (NKH), also known as glycine encephalopathy, is a rare inherited neurometabolic disorder caused by a deficiency in the glycine cleavage enzyme system (GCS), leading to the pathological accumulation of glycine in blood and cerebrospinal fluid (CSF). This case report details a neonate presenting with central apnea, profound hypotonia, and refractory seizures, alongside prenatal findings of polyhydramnios and hiccup-like fetal movements, all strongly suggestive of severe NKH. Diagnostic evaluation confirmed markedly elevated glycine levels in serum and CSF, with a CSF-to-plasma glycine ratio exceeding 0.
View Article and Find Full Text PDFClin J Pain
November 2024
Department of Anaesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy.
Objectives: The rationale of adoption opioid sparing anesthesia (OSA) is to achieve perioperative analgesia with a minimal amount of opioid combined to non-opioid adjuvants during and after surgery, namely multimodal anesthesia. The OSA approach was originally developed to overcome the known complications of opioid-based anesthesia (OA) and the present scoping review (ScR) aims at providing the clinical evidence of safety and efficacy of OSA with respect to OA.
Methods: This ScR is mainly focused on studies presenting evidence on the safety and efficacy of OSA versus OA.
Anesth Analg
November 2024
From the Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.
Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).
Pharmaceuticals (Basel)
December 2024
School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK.
Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA.
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!