Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure. The maximum emission wavelength of the L-Cys-AuNCs@ZIF-8 composite was at 868 nm, and the fluorescence intensity of L-Cys-AuNCs@ZIF-8 was nearly nine-fold compared with L-Cys-AuNCs without the ZIF-8 package. The mechanism investigation by fluorescence spectroscopy and X-ray photoelectron spectroscopy showed that L-Cys-AuNCs@ZIF-8 impeded ligand rotation, induced energy dissipation, and diminished the self-quenching effect, attributing to the spatial distribution of L-Cys-AuNCs. Based on the high fluorescence efficiency of L-Cys-AuNCs@ZIF-8, a "signal off" detective platform was proposed with copper ions as a model analyte, achieving a sensitive detection limit of Cu at 16.7 nM. The quenching mechanism was confirmed, showing that the structure of the L-Cys-AuNCs@ZIF-8 nanocomposites was collapsed by the addition of Cu. Attributing to the strong adsorption ability between copper ions and pyridyl nitrogen, the as-prepared L-Cys-AuNCs@ZIF-8 was shown to accumulate Cu, and the Zn in ZIF-8 was replaced by Cu.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules29246011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!