A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and Physicochemical Properties of Glycerol-Plasticized Edible Films Made from Pea Protein-Based Emulsions Containing Increasing Concentrations of Candelilla Wax or Oleic Acid. | LitMetric

Hydrophobization could improve the moisture resistance of biopolymer-based materials, depending on the methods and materials used, providing benefits for packaging applications. The aim of this study was to compare the effect of increasing concentrations (0-2.0%) of candelilla wax (CW) and oleic acid (OA) on the structural and physicochemical properties, including water affinity, of glycerol-plasticized pea protein isolate (PPI) films. OA acidified the film-forming solution and increased its viscosity more effectively than CW. At the highest concentration, OA prevented cohesive film formation, indicating a weakening of protein self-interaction. OA caused less yellowing, matting, and a smaller reduction in UV/VIS light transmittance compared to CW. Both lipids caused a slight reduction in the films' water content. Phase separation (creaming) of CW enhanced surface hydrophobicity, resulting in a greater reduction in water vapor permeability than OA (~37-63% vs. 2-18%). The addition of lipids did not reduce film solubility or water absorption, and OA even increased these parameters. Increasing lipid content decreased the mechanical strength and stretchability of the films by 28-37% and 18-43%, respectively. The control film exhibited low heat-sealing strength (0.069 N/mm), which improved by 42% and 52% with the addition of CW and OA at optimal levels.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules29245998DOI Listing

Publication Analysis

Top Keywords

structural physicochemical
8
physicochemical properties
8
increasing concentrations
8
candelilla wax
8
wax oleic
8
oleic acid
8
properties glycerol-plasticized
4
glycerol-plasticized edible
4
edible films
4
films pea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!