The stability of RNA is a critical factor in determining its functionality and degradation in the cell. In recent years, it has been shown that the stability of RNA depends on a complex interaction of external and internal factors. External conditions, such as temperature fluctuations, the level of acidity of the environment, the presence of various substances and ions, as well as the effects of oxidative stress, can change the structure of RNA and affect its stability. Internal factors, including the specific structural features of RNA and its interactions with protein molecules, also have a significant impact on the regulation of the stability of these molecules. In this article, we review the main factors influencing RNA stability, since understanding the factors influencing this extremely complex process is important not only for understanding the regulation of expression at the RNA level but also for developing new methods for isolating and stabilizing RNA in preparation for creating biobanks of genetic material. We reviewed a modern solution to this problem and formulated basic recommendations for RNA storage aimed at minimizing degradation and damage to the molecule.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules29245978DOI Listing

Publication Analysis

Top Keywords

rna
9
rna stability
8
structural features
8
stability rna
8
internal factors
8
factors influencing
8
stability
5
stability review
4
review role
4
role structural
4

Similar Publications

Biomedical datasets are the mainstays of computational biology and health informatics projects, and can be found on multiple data platforms online or obtained from wet-lab biologists and physicians. The quality and the trustworthiness of these datasets, however, can sometimes be poor, producing bad results in turn, which can harm patients and data subjects. To address this problem, policy-makers, researchers, and consortia have proposed diverse regulations, guidelines, and scores to assess the quality and increase the reliability of datasets.

View Article and Find Full Text PDF

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Sexual dimorphism in lung transcriptomic adaptations in fetal alcohol spectrum disorders.

Respir Res

January 2025

Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, 275 E Hancock St, Rm 195, Detroit, MI, 48201, USA.

Current fetal alcohol spectrum disorders (FASD) studies primarily focus on alcohol's actions on the fetal brain although respiratory infections are a leading cause of morbidity/mortality in newborns. The limited studies examining the pulmonary adaptations in FASD demonstrate decreased surfactant protein A and alveolar macrophage phagocytosis, impaired differentiation, and increased risk of Group B streptococcal pneumonia with no study examining sexual dimorphism in adaptations. We hypothesized that developmental alcohol exposure in pregnancy will lead to sexually dimorphic fetal lung morphological and immune adaptations.

View Article and Find Full Text PDF

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!