Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The exploration of natural antifungal substances from algal origins is significant due to the increasing resistance of pathogens to conventional antifungal agents and the growing consumer demand for natural products. This manuscript represents the inaugural investigation into the antifungal attributes of bioactive compounds extracted from via supercritical carbon dioxide (scCO) extraction utilizing contemporary countercurrent chromatography (CCC). In aligning with the prospective utilization of this extract within the agricultural sector, this study also serves as the preliminary report demonstrating the capability of scCO extract to enhance the activity of plant resistance enzymes. The fractions obtained through CCC were subjected to evaluation for their efficacy in inhibiting the macrospores of . The CCC methodology facilitated the successful separation of fatty acids (reaching up to 82.0 wt.% in a given fraction) and fucosterol (attaining up to 79.4 wt.% in another fraction). All CCC fractions at the concentration of 1.0% were found to inhibit 100% of growth. Moreover, scCO extract was able to activate plant resistance enzymes (Catalase, Ascorbic Peroxidase, Guaiacol Peroxidase, Phenylalanine Ammonia-Lyase, and Phenylalanine Ammonia-Lyase Activity).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules29245957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!