This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components. Differential Scanning Calorimetry (DSC) analysis revealed a single glass transition temperature (), indicating the effective plasticizing effect of PCL on PEF, which enhances the flexibility of the copolymers. X-ray Diffraction (XRD) studies highlight the complex relationship between PCL content and crystallization in PEF-PCL block copolymers, emphasizing the need to balance crystallinity and mechanical properties for optimal material performance. Broadband Dielectric Spectroscopy (BDS) confirmed excellent distribution of PEF-PCL without phase separation, which is vital for maintaining consistent material properties. Mechanical properties were evaluated using Nanoindentation testing, demonstrating the potential of these copolymers as flexible packaging materials due to their enhanced mechanical strength and flexibility. The study concludes that PEF-PCL block copolymers are promising candidates for sustainable packaging solutions, combining environmental benefits with desirable material properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules29245943 | DOI Listing |
Sci Technol Adv Mater
November 2024
Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) (PLys--PEG--PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano or Nano) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia.
This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
Well-defined amorphous/semi-crystalline statistical copolymers of n-dodecyl isocyanate, DDIC, and allyl isocyanate, ALIC, were synthesized via coordination polymerization using the chiral half-titanocene complex CpTiCl(O-(S)-2-Bu) as an initiator. In the frame of the terminal model, the monomer reactivity ratios of the statistical copolymers were calculated using both well-known linear graphical methods and the computer program COPOINT. The molecular and structural characteristics of the copolymers were also calculated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!