A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal, Molecular Dynamics, and Mechanical Properties of Poly(Ethylene Furanoate)/Poly(ε-Caprolactone) Block Copolymers. | LitMetric

This study presents the synthesis and characterization of a series of multiblock copolymers, poly(ethylene 2,5-furandicarboxylate)-poly(ε-caprolactone) (PEF-PCL), created through a combination of the two-step melt polycondensation method and ring opening polymerization, as sustainable alternatives to fossil-based plastics. The structural confirmation of these block copolymers was achieved through Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), ensuring the successful integration of PEF and PCL segments. X-ray Photoelectron Spectroscopy (XPS) was employed for chemical bonding and quantitative analysis, providing insights into the distribution and compatibility of the copolymer components. Differential Scanning Calorimetry (DSC) analysis revealed a single glass transition temperature (), indicating the effective plasticizing effect of PCL on PEF, which enhances the flexibility of the copolymers. X-ray Diffraction (XRD) studies highlight the complex relationship between PCL content and crystallization in PEF-PCL block copolymers, emphasizing the need to balance crystallinity and mechanical properties for optimal material performance. Broadband Dielectric Spectroscopy (BDS) confirmed excellent distribution of PEF-PCL without phase separation, which is vital for maintaining consistent material properties. Mechanical properties were evaluated using Nanoindentation testing, demonstrating the potential of these copolymers as flexible packaging materials due to their enhanced mechanical strength and flexibility. The study concludes that PEF-PCL block copolymers are promising candidates for sustainable packaging solutions, combining environmental benefits with desirable material properties.

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules29245943DOI Listing

Publication Analysis

Top Keywords

block copolymers
16
mechanical properties
12
pef-pcl block
8
material properties
8
copolymers
7
properties
5
thermal molecular
4
molecular dynamics
4
mechanical
4
dynamics mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!