This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The results demonstrated stable electrochemical performance with minimal current variation. However, significant structural changes occurred, including the formation of new microstructures on the cathode and the emergence of KHCO (potassium bicarbonate) compound on both electrodes. Crystallographic analysis revealed an increase in crystallite size and tensile lattice strain on the cathode, while the anode exhibited compressive lattice strains and a reduction in crystallite size. These findings suggest that the observed changes were driven by electrochemical annealing processes, contributing to material redistribution and surface modifications during prolonged electrolysis. This study provides insight into optimizing NiFe-based catalysts for enhanced durability and efficiency in water splitting technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/molecules29245820 | DOI Listing |
Molecules
December 2024
Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).
View Article and Find Full Text PDFACS Nano
January 2025
College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.
View Article and Find Full Text PDFChem Asian J
January 2025
Charotar University of Science and Technology, Physical Science, P.D. Patel Institute of Applied Sciences, 388421, Changa, INDIA.
The primary obstacle in electrolyzing water is that prolonged large-current operation quickly degrades performance, making it difficult to achieve efficient and continuous hydrogen evolution at high current densities. This work prepared sulfur-doped nickel ferrite nanocomposites using the simple hydrothermal method to improve electrocatalytic green hydrogen production at high-current densities. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze the crystalline structure, morphology, and chemical composition of the synthesized nanocomposites.
View Article and Find Full Text PDFChemSusChem
November 2024
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
We explored the electrochemical behavior of antimony-doped tin oxide (ATO) and perylene diimide (PDI)-sensitized ATO (ATO-PDI) for the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) mediated conversion of 5-hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a value-added substrate for alternative polymer synthesis. We first showed that ATO displayed good electrocatalytic properties towards TEMPO, affording a quasi-reversible response with a heterogeneous rate constant on the order of 2×10 cm s. We then evaluated the performance of ATO under exhaustive electrolysis of HMF in basic aqueous electrolyte, reaching 80 % Faradaic Efficiency (FE) for FDCA production.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.
The deprived electrochemical kinetics of the oxygen evolution reaction (OER) catalyst is the prime bottleneck and remains the major obstacle in the water electrolysis processes. Herein, a facile hydrothermal technique was implemented to form a freestanding polyhedron-like CoO on the microporous architecture of Ni foam, its reaction kinetics enhanced through sulfide counterpart transformation in the presence of NaS, and their catalytic OER performances comparatively investigated in 1 M KOH medium. The formed CoS catalyst shows outstanding catalytic OER activity at a current density of 100 mA cm by achieving a relatively low overpotential of 292 mV compared to the pure CoO catalyst and the commercial IrO catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!