Numerical Analysis of the Influence of Air Flow Rate on the Development of the Porous Structure of Activated Carbons Prepared from Macadamia Nut Shells.

Materials (Basel)

State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China.

Published: December 2024

This paper presents the numerical analysis of the influence of air flow rate on the porous structure development of activated carbons prepared from macadamia nut shells. The analyses based on nitrogen and carbon dioxide isotherms were carried out by the new numerical clustering-based adsorption analysis method. Therefore, it was possible to evaluate the porous structure with high precision and reliability. In particular, the results obtained showed that activated carbon prepared at an air flow rate of 700 cm/min has the highest adsorption capacity with respect to this adsorbate, but with surface heterogeneity. On the other hand, numerical analysis based on carbon dioxide adsorption isotherms showed that the activated carbon with the highest adsorption capacity towards carbon dioxide is the sample obtained at an air flow rate of 500 cm/min. The analyses conducted have shown that too high an air flow rate causes a violent oxidation reaction, leading to uncontrolled burning of the carbonaceous substance and destruction of the structure of the smallest micropores.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17246264DOI Listing

Publication Analysis

Top Keywords

air flow
20
flow rate
20
numerical analysis
12
porous structure
12
carbon dioxide
12
analysis influence
8
influence air
8
activated carbons
8
carbons prepared
8
prepared macadamia
8

Similar Publications

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Arteriovenous malformations (AVMs) are rare congenital vascular malformations with associated morbidities. We describe a neonatal case of upper limb high-flow AVM presenting with upper limb soft tissue mass and postnatal high-output heart failure. Doppler study suggested high-flow AVM, and later magnetic resonance angiography of the right upper limb confirmed the diagnosis.

View Article and Find Full Text PDF

Anchusa italica Retz. (AIR), a traditional herbal remedy, is commonly applied in managing heart and brain disorders. However, its specific function and mechanism in acute cerebral ischemia-reperfusion injury (CIRI) are not fully understood.

View Article and Find Full Text PDF

Canopy flows occur when a moving fluid encounters a matrix of free-standing obstacles and are found in diverse systems, from forests and marine ecology to urban landscapes and biology (e.g. cilia arrays).

View Article and Find Full Text PDF

To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!