Propagation of a Fatigue Crack Through a Hole.

Materials (Basel)

University Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Mechanical Engineering, 3030-788 Coimbra, Portugal.

Published: December 2024

The stop-hole technique is a well-known strategy to extend the fatigue life of cracked components. The ability to estimate fatigue life after the hole is important for safety reasons. The objective here is to develop strategies for the accurate prediction of initiation and propagation life ahead of the stop-hole. Experimental work was developed in a Compact-Tension (CT) specimen made of 7050-T7451 aluminium alloy and with a 3 mm diameter hole. A total number of 625,000 load cycles were required to re-initiate the crack after the hole. Crack initiation life after the hole was estimated using the Theory of Critical Distances combined with the Smith-Watson-Topper parameter. A value of a = 31.83 µm was obtained for El Haddad parameter, which was used to define the critical distance. The predicted life was found to be only 4% lower than the experimental value. The fatigue crack growth (FCG) rate was calculated using a node release strategy, assuming that cyclic plastic deformation is the main damage mechanism and that cumulative plastic strain is the crack driving parameter. A good agreement was found between the numerical predictions of da/dN and the experimental results. The main result, however, is the proposed methodology, which allows predicting the initiation and propagation lives in notched components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678596PMC
http://dx.doi.org/10.3390/ma17246261DOI Listing

Publication Analysis

Top Keywords

fatigue crack
8
crack hole
8
fatigue life
8
life hole
8
initiation propagation
8
crack
5
hole
5
life
5
propagation fatigue
4
hole stop-hole
4

Similar Publications

This study evaluated the effect of substrate core materials and occlusal contact patterns on the fatigue mechanical behavior and stress distribution of single-unit ceramic crowns. One hundred and twenty monolithic crowns were fabricated from zirconia (YZ - IPS e.max ZirCAD, Ivoclar), lithium disilicate (LD - IPS e.

View Article and Find Full Text PDF

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.

View Article and Find Full Text PDF

A Time Series Proposal Model to Define the Speed of Carbon Steel Corrosion in an Extreme Acid Environment.

Materials (Basel)

December 2024

Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, 21007 Huelva, Spain.

This article shows the behavior of the corrosive effect of acid mine water on carbon steel metal alloys. Mining equipment, composed of various steel alloys, is particularly prone to damage from highly acidic water. This corrosion results in material thinning, brittle fractures, fatigue cracks, and ultimately, equipment failure.

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!