A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the Effect of RSW Parameters on the Shear Force and Nugget Diameter of Similar and Dissimilar Joints Using Machine Learning Algorithms and Multilayer Perceptron. | LitMetric

Resistance spot-welded joints are crucial parts in contemporary manufacturing technology due to their ubiquitous use in the automobile industry. The necessity of improving manufacturing efficiency and quality at an affordable cost requires deep knowledge of the resistance spot welding (RSW) process and the development of artificial neural network (ANN)- and machine learning (ML)-based modelling techniques, apt for providing essential tools for design, planning, and incorporation in the welding process. Tensile shear force and nugget diameter are the most crucial outputs for evaluating the quality of a resistance spot-welded specimen. This study uses ML and ANN models to predict shear force and nugget diameter responses to RSW parameters. The RSW analysis was executed on similar and dissimilar AISI 304 and grade 2 titanium alloy joints with equal and unequal thicknesses. The input parameters included welding current, pressure, welding duration, squeezing time, holding time, pulse welding, and sheet thickness. Linear regression, Decision tree, Support vector machine (SVM), Random forest (RF), Gradient-boosting, CatBoost, K-Nearest Neighbour (KNN), Ridge, Lasso, and ElasticNet machine learning algorithms, along with two different structures of Multilayer Perceptron, were utilized for studying the impact of the RSW parameters on the shear force and nugget diameter. Different validation metrics were applied to assess each model's quality. Two equations were developed to determine the shear force and nugget diameter based on the investigation parameters. The current research also presents a prediction of the Relative Importance (RI) of RSW factors. Shear force and nugget diameter predictions were examined using SHapley (SHAP) Additive Explanations for the first time in the RSW field. Trainbr as the training function and Logsig as the transfer function delivered the best ANN model for predicting shear force in a one-output structure. Trainrp with Tansig made the most accurate predictions for nugget diameter in a one-output structure and for shear force and diameter in a two-output structure. Depending on validation metrics, the Random forest model outperformed the other ML algorithms in predicting shear force or nugget diameter in a one-output model, while the Decision tree model gave the best prediction using a two-output structure. Linear regression made the worst ML predictions for shear force, while ElasticNet made the worst nugget diameter forecasts in a one-output model. However, in two-output models, Lasso made the worst predictions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17246250DOI Listing

Publication Analysis

Top Keywords

shear force
40
nugget diameter
36
force nugget
28
rsw parameters
12
machine learning
12
shear
10
force
10
diameter
10
nugget
9
parameters shear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!