The effects of aging treatment and the volume fraction of precipitation particles on the nano-hardness and nano-indentation morphology of Ni-based single crystal superalloys are systematically investigated. Using nano-indentation tests and atomic force microscopy (AFM), this study examined the mechanical properties and related physical mechanisms of Ni-based superalloys that have two volume fractions of precipitation particles and four aging treatment times. Results analyzed using the Oliver-Pharr method indicate that prolonging the aging time or increasing the volume fraction of particles enhances the nano-hardness and creep resistance of Ni-based single crystal superalloys and reduces the indentation-affected area. Additionally, the nano-hardness and elastic modulus decrease gradually with increasing applied force, revealing an obvious indentation size effect. These variations are closely linked to the size and density of particles and work hardening rate, as well as to the topologically close-packed (TCP) phases, which influence dislocation movement and accumulation within the material and lead to various nano-indentation behavior in Ni-based single crystal superalloys. The related study provides theoretical guidance and experimental data to support the design and application of superalloys.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17246216DOI Listing

Publication Analysis

Top Keywords

ni-based single
16
single crystal
16
crystal superalloys
16
aging treatment
12
volume fraction
12
treatment volume
8
nano-indentation behavior
8
behavior ni-based
8
precipitation particles
8
superalloys
6

Similar Publications

The effects of aging treatment and the volume fraction of precipitation particles on the nano-hardness and nano-indentation morphology of Ni-based single crystal superalloys are systematically investigated. Using nano-indentation tests and atomic force microscopy (AFM), this study examined the mechanical properties and related physical mechanisms of Ni-based superalloys that have two volume fractions of precipitation particles and four aging treatment times. Results analyzed using the Oliver-Pharr method indicate that prolonging the aging time or increasing the volume fraction of particles enhances the nano-hardness and creep resistance of Ni-based single crystal superalloys and reduces the indentation-affected area.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

A phase-field study to explore the nature of the morphological instability of Kirkendall voids in complex alloys.

Sci Rep

December 2024

Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, NRW, Germany.

The present research explores theoretical and computational aspects of the morphological instability of Kirkendall voids induced by a directed flux of vacancies. A quantitative phase-field model is coupled with a multi-component diffusion model and CALPHAD-type thermodynamic and kinetic databases to obtain a meso-scale description of Kirkendall void morphologies under isothermal annealing. The material under investigation is a diffusion couple consisting of a multi-phase multi-component single-crystal Ni-based superalloy on one side and pure Ni on the other side.

View Article and Find Full Text PDF

Narrow-bandgap (NBG) Sn-Pb mixed perovskite solar cells (PSCs) represent a promising solution for surpassing the radiative efficiency of single-junction solar cells. The unique bandgap tunability of halide perovskites enables optimal tandem configurations of wide-bandgap (WBG) and NBG subcells. However, these devices are limited by the susceptibility of Sn in the NBG bottom cell to being oxidized to Sn, creating detrimental Sn vacancies.

View Article and Find Full Text PDF

This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!