Biochar-A Filler in "Bioplastics" for Horticultural Applications.

Materials (Basel)

Faculty of Mechanical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Czestochowa, Poland.

Published: December 2024

Biochar is attracting a lot of attention as it is considered a novel, renewable, and bio-based filler that can be used specifically for developing and manufacturing "bioplastics" for growing plants such as mulch films and plant accessories. The manufacturing of "bioplastics" uses biopolymers but also various additives such as fillers, which are primarily used to replace some of the expensive biopolymers in a biocomposite composition and/or to improve the mechanical properties of the final products. This review aims to demonstrate the applications of biochar as a filler in bioplastics, specifically for horticultural uses; summarize the most recent findings; and discuss future research directions. With this review, we address some of the most important issues related to the requirements for biochar as a filler for bio-based and biodegradable plastics, the effect of biochar properties and loading rates on the properties of biocomposites, and the suitability of biochar for manufacturing of "bioplastics" for horticultural use. We also discuss the advantages as well as challenges and limitations to the use of biochar for manufacturing bio-based and biodegradable plastics for horticultural uses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676673PMC
http://dx.doi.org/10.3390/ma17246208DOI Listing

Publication Analysis

Top Keywords

manufacturing "bioplastics"
12
"bioplastics" horticultural
8
applications biochar
8
biochar filler
8
bio-based biodegradable
8
biodegradable plastics
8
biochar manufacturing
8
biochar
6
biochar-a filler
4
"bioplastics"
4

Similar Publications

Manufacturing water-stable carboxymethyl cellulose (CMC) films as an alternative to commercial plastics is a promising solution to address plastic pollution. In this study, waste walnut shell (WS) was used as a natural lignocellulosic filler, glycerol as a plasticizer, and citric acid (CA) as a crosslinking agent for preparing high-performance CMC-based bioplastics through a one-pot casting method. When WS content was 12 wt%, the obtained CWGA-12 after optimization exhibited excellent mechanical properties (tensile strength ≈18.

View Article and Find Full Text PDF

Biochar-A Filler in "Bioplastics" for Horticultural Applications.

Materials (Basel)

December 2024

Faculty of Mechanical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Czestochowa, Poland.

Biochar is attracting a lot of attention as it is considered a novel, renewable, and bio-based filler that can be used specifically for developing and manufacturing "bioplastics" for growing plants such as mulch films and plant accessories. The manufacturing of "bioplastics" uses biopolymers but also various additives such as fillers, which are primarily used to replace some of the expensive biopolymers in a biocomposite composition and/or to improve the mechanical properties of the final products. This review aims to demonstrate the applications of biochar as a filler in bioplastics, specifically for horticultural uses; summarize the most recent findings; and discuss future research directions.

View Article and Find Full Text PDF

While the industrial sectors have recently focused on producing bioplastic materials, the utilization of edible feedstocks and the generation of wastes and byproducts during the bioplastic synthesis process might delay achieving the environmental sustainability strategy. To overcome these limitations related to bioplastic industrialization, this study focuses on synthesizing bioplastics from waste sources, followed by recycling its end-of-life (e.g.

View Article and Find Full Text PDF

The global plastic crisis requires urgent attention, as highlighted by a comprehensive review of LCA studies on plastics. Mismanagement of plastic waste has worsened this crisis, affecting all life forms and contaminating natural resources. Plastic production leads to Green House Gas (GHG) emissions.

View Article and Find Full Text PDF

Evaluation of Blended Poly(3-hydroxybutyrate--3-hydroxyhexanoate) Properties Containing Various 3HHx Monomers.

Polymers (Basel)

October 2024

Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.

Article Synopsis
  • - Polyhydroxyalkanoate (PHA), particularly P(3HB--3HHx), is a bioplastic whose properties are influenced by the mole fraction of 3-hydroxyhexanoate (3HHx) but faces challenges in mass production due to complex fermentation conditions and strain development.
  • - To address production obstacles, researchers blended poly(3-hydroxybutyrate) (P(3HB)) with different 3HHx content films, assessing their molecular weight, thermal, mechanical, and degradability properties.
  • - The study found that these blended films maintained similar properties to microbial P(3HB--3HHx) and demonstrated a high degradation rate, suggesting that the simple blending method
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!