Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the potential for efficient and resourceful utilization of phosphogypsum (PG) through the preparation of a High-volume Phosphogypsum Cement Stabilized Road Base (HPG-CSSB). The investigation analyzed the unconfined compressive strength (UCS), water stability, strength formation mechanism, microstructure, and pollutant curing mechanism of HPG-CSSB by laser diffraction methods (LD), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma-mass spectrometry (ICP-MS). The optimal mix ratio of HPG-CSSB was 4% cement, 1% CA2, 35% PG, and 60% graded crushed stone. The UCS reached 6.6 MPa, 9.3 MPa, and 11.3 MPa at 7, 28, and 60 d, respectively. The alkaline curing agent stimulated cement activity and accelerated the release of Ca and SO from the PG. This formed many C-S-H gels and ettringite (AFt). The curing agent converted Ca to C-(A)-S-H gels due to high volcanic ash activity. The diverse hydration products strengthened HPG-CSSB. The HPG-CSSB exhibits favorable water stability, demonstrating a mere 7.6% reduction in strength following 28 d of immersion. The C-S-H gel and AFt generated in the system can carry out ion exchange and adsorption precipitation with F and PO in PG, achieving the curing effect of toxic and hazardous substances. HPG-CSSB meets the Class A standard for integrated wastewater discharge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17246201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!