Nanotechnology, delving into the realm of nanometric structures, stands as a transformative force in orthopedics, reshaping diagnostics, and numerous regenerative interventions. Commencing with diagnostics, this scientific discipline empowers accurate analyses of various diseases and implant stability, heralding an era of unparalleled precision. Acting as carriers for medications, nanomaterials introduce novel therapeutic possibilities, propelling the field towards more targeted and effective treatments. In arthroplasty, nanostructural modifications to implant surfaces not only enhance mechanical properties but also promote superior osteointegration and durability. Simultaneously, nanotechnology propels tissue regeneration, with nanostructured dressings emerging as pivotal elements in accelerating wound healing. As we navigate the frontiers of nanotechnology, ongoing research illuminates promising avenues for further advancements, assuring a future where orthopedic practices are not only personalized but also highly efficient, promising a captivating journey through groundbreaking innovations and tailored patient care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677186 | PMC |
http://dx.doi.org/10.3390/ma17246162 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Research and Development, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, India.
Background: Injectable platelet-rich fibrin (i-PRF) has the capacity to release great amounts of several growth factors, as well as to stimulate increased fibroblast migration and the expression of collagen, transforming growth factor β, and platelet-derived growth factor. Consequently, i-PRF can be used as a bioactive agent to promote periodontal tissue regeneration.
Objective: We aim to compare and evaluate the effectiveness of i-PRF in periodontal tissue regeneration.
Dokl Biochem Biophys
January 2025
Voronezh State University, Voronezh, Russia.
Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
Purpose: This systematic review aims to assess the performance, methodological quality and reporting transparency in prediction models for the dental implant's complications and survival rates.
Methods: A literature search was conducted in PubMed, Web of Science, and Embase databases. Peer-reviewed studies that developed prediction models for dental implant's complications and survival rate were included.
Discov Nano
January 2025
Department of Biotechnology, Alagappa University, Karaikudi, 630003, India.
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!