Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC) were synthesized via sol-gel processing with subsequent pyrolysis in an inert gas atmosphere. The physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and Si MAS NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and simulated body fluid (SBF) immersion test. Mg and Ca were successfully doped into the network structure of SiOC, and the non-bridging oxygens (NBO) were formed. The hydroxycarbonate apatite (HCA) was formed on the modified SiOC surface after soaking in simulated body fluid (SBF) for 14 days, and the HCA generation rate of SiCaOC was higher than that of SiMgOC. Accompanying the increase of bioactivity, the network connectivity (NC) of the modified SiOC decreased from 6.05 of SiOC to 5.80 of SiCaOC and 5.60 of SiMgOC. However, structural characterization and biological experiments revealed the nonlinear relationship between the biological activity and NC of the modified SiOC materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678752 | PMC |
http://dx.doi.org/10.3390/ma17246159 | DOI Listing |
Materials (Basel)
December 2024
National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.
Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC) were synthesized via sol-gel processing with subsequent pyrolysis in an inert gas atmosphere. The physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and Si MAS NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and simulated body fluid (SBF) immersion test.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30 Av, 30-059 Kraków, Poland.
This article presents a study on the functional properties and morphology of coatings based on amorphous silicon oxycarbide modified with phosphate ions and comodified with aluminum and boron. The objective of this modification was to enhance the biocompatibility and bioactivity without affecting its protective properties. The comodification was aimed toward stabilization of phosphate in the structure.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China. Electronic address:
Panax ginseng C.A.Mey is a famous natural herbal medicine worldwide.
View Article and Find Full Text PDFNat Chem
November 2024
Department of Pharmacy, National University of Singapore, Singapore, Singapore.
Two of nature's recurring binding motifs in metalloproteins are the CxxxCxxC motif in radical SAM enzymes and the 2-His-1-carboxylate motif found both in zincins and α-ketoglutarate and non-haem iron enzymes. Here we show the confluence of these two domains in a single post-translational modifying enzyme containing an N-terminal radical S-adenosylmethionine domain fused to a C-terminal 2-His-1-carboxylate (HExxH) domain. The radical SAM domain catalyses three-residue cyclophane formation and is the signature modification of triceptides, a class of ribosomally synthesized and post-translationally modified peptides.
View Article and Find Full Text PDFCarbohydr Polym
November 2024
Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies (I2E3), Université du Québec à Trois-Rivières (UQTR), 3351 des Forges Blvd., Trois-Rivières, Québec G8Z 4M3, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!