In this research paper, the factors impacting electrical conductivity of the flexible graphite foils (GFs) produced by different forming processes, namely, either by rolling or pressing, were studied. The relationship between electrical conductivity and texture and structure that formed when producing the material was examined. Correlation was determined between the texture sharpness and anisotropy of electrical conductivity, as well as the extent of impact from the substructural characteristics on the properties' values. Besides, it was demonstrated that the higher values of micro-strains, as well as the secondary phase substructure, reduced conductivity in foils. Electrical conductivity calculation was optimized for different directions in foils using the Kearns texture parameters and taking into consideration the foil structural characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676233PMC
http://dx.doi.org/10.3390/ma17246153DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
20
graphite foils
8
rolling pressing
8
electrical
5
conductivity
5
conductivity graphite
4
foils
4
foils produced
4
produced rolling
4
pressing paper
4

Similar Publications

Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.

View Article and Find Full Text PDF

Effect of Temperature on Condensed State Structure and Conductivity Characteristics of Micron-Level Biaxially Oriented Polypropylene Films.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.

View Article and Find Full Text PDF

Robust Mechanically Interlocked Network Ionogels.

Angew Chem Int Ed Engl

January 2025

Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.

Ionogels have attracted considerable attention as versatile materials due to their unique ionic conductivity and thermal stability. However, relatively weak mechanical performance of many existing ionogels has hindered their broader application. Herein, we develop robust, tough, and impact-resistant mechanically interlocked network ionogels (IGMINs) by incorporating ion liquids with mechanical bonds that can dissipate energy while maintain structural stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!