Solid oxide fuel cells (SOFCs) and solid oxide electrolyzer cells (SOECs) represent a promising clean energy solution. In the case of SOFCs, they offer efficiency and minimal to zero CO emissions when used to convert chemical energy into electricity. When SOFC systems are operated in regenerative mode for water electrolysis, the SOFCs become solid oxide electrolyzer cells (SOECs). The problem with these systems is the supply and availability of raw materials for SOFC and SOEC components. This raises significant economic challenges and has an impact on the price and scalability of these technologies. Recycling the materials that make up these systems can alleviate these economic challenges by reducing dependence on the supply of raw materials and reducing overall costs. From this point of view, this work is a perspective analysis and examines the current research on the recycling of SOFC and SOEC materials, highlighting the potential paths towards a circular economy. The existing literature on different approaches to recycling the key materials for components of SOFCs and SOECs is important. Mechanical separation techniques to isolate these components, along with potential strategies like chemical leaching or hydrometallurgical and material characterization, to ensure the quality of recycled materials for reuse in new SOFCs and SOECs are important as well. By evaluating the efficiency of various methods and the quality of recovered materials, this study aims to provide valuable insights for advancing sustainable and economically viable SOFC and SOEC technologies within a net-zero economic framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17246113 | DOI Listing |
Nature
January 2025
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry. However, application of HTE in electrosynthesis-an enabling tool for chemical synthesis-has been limited by a dearth of suitable standardized reactors. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale.
View Article and Find Full Text PDFFood Res Int
January 2025
The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.
View Article and Find Full Text PDFWaste Manag
January 2025
BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, Québec, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:
Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300450, China.
Myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME) contribute to the malignant progression of tumors by exerting immunosuppressive effects. Bacterial lipopolysaccharides (LPS) have been widely demonstrated in various types of solid tumors. LPS can promote the malignant progression of tumors, which mechanism has not yet been fully elucidated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Korea Advanced Institute of Science and Technology, Chemical and Biomolecular Engineering, Dae-Hak-Ro 291, 34141, Daejeon, KOREA, REPUBLIC OF.
Forming defect sites on catalyst supports and immobilizing precious metal atoms at these sites offers an efficient approach for preparing single-atom catalysts. In this study, we employed an Fe-Ce oxide solid solution (FC), which has surface oxygen that reduces more readily than that of ceria, to anchor Rh single atoms (Rh1). When utilized in the selective catalytic reduction of NO with CO (CO-SCR), Rh1/FC reduced at 500 °C- characterized by less oxidic Rh state induced by an oxygen-deficient coordination-exhibited superior activity and durability compared to Rh1/ceria and Rh1/FC reduced at 300 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!