Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, different combinations of mycelium biocomposites (MBs) were developed using primary substrates sourced from the local agricultural, wood processing, and paper industries. The physicomechanical properties, thermal conductivity, and fire behavior were evaluated. The highest bending strength was achieved in composites containing waste fibers and birch sanding dust, with a strength competitive with that of synthetic polymers like EPS and XPS, as well as some commercial building materials. The lowest thermal conductivity was observed in hemp-based MB, with a lambda coefficient of 40 m·W·m·K, making these composites competitive with non-mycelium insulation materials, including synthetic polymers such as EPS and XPS. Additionally, MB exhibited superior fire resistance compared to various synthetic foams and composite materials. They showed lower peak heat release rates (134-243 k·W·m) and total smoke release (7-281 m·m) than synthetic polymers, and lower total heat release (6-62 k·W·m) compared to certain wood composites. Overall, the mechanical and thermal properties, along with the fire performance of MB, support their potential as a sustainable alternative to petroleum-based and traditional composite materials in the building industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17246111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!