A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonlinear Thermomechanical Low-Velocity Impact Behaviors of Geometrically Imperfect GRC Beams. | LitMetric

Nonlinear Thermomechanical Low-Velocity Impact Behaviors of Geometrically Imperfect GRC Beams.

Materials (Basel)

Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China.

Published: December 2024

This paper studies the thermomechanical low-velocity impact behaviors of geometrically imperfect nanoplatelet-reinforced composite (GRC) beams considering the von Kármán nonlinear geometric relationship. The graphene nanoplatelets (GPLs) are assumed to have a functionally graded (FG) distribution in the matrix beam along its thickness, following the X-pattern. The Halpin-Tsai model and the rule of mixture are employed to predict the effective Young modulus and other material properties. Dividing the impact process into two stages, the corresponding impact forces are calculated using the modified nonlinear Hertz contact law. The nonlinear governing equations are obtained by introducing the von Kármán nonlinear displacement-strain relationship into the first-order shear deformation theory and dispersed via the differential quadrature (DQ) method. Combining the governing equation of the impactor's motion, they are further parametrically solved by the Newmark-β method associated with the Newton-Raphson iterative process. The influence of different types of geometrical imperfections on the nonlinear thermomechanical low-velocity impact behaviors of GRC beams with varying weight fractions of GPLs, subjected to different initial impact velocities, are studied in detail.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17246062DOI Listing

Publication Analysis

Top Keywords

thermomechanical low-velocity
12
low-velocity impact
12
impact behaviors
12
grc beams
12
nonlinear thermomechanical
8
behaviors geometrically
8
geometrically imperfect
8
von kármán
8
kármán nonlinear
8
nonlinear
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!