A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Phase Evolution of a Nanocrystalline FeCrNiAl (x = 1.0, 0.5, 0.25) High-Entropy Alloys by Mechanical Alloying. | LitMetric

High-entropy alloys (HEAs) with ultrafine grained and high strength can be prepared by mechanical alloying (MA) followed by sintering. Therefore, MA, as a unique solid powder processing method, has many effects on the microstructures and mechanical properties of the sintered bulk HEAs. This work focused on the alloying behavior, morphology, and phase evolution of FeCrNiAl (x = 1.0, 0.5, 0.25) HEAs by MA. The X-ray diffraction results show that the powders achieved a supersaturated solid solution body-centered-cubic (BCC) phase after MA; the crystalline size reached the nanoscale and was refined to ~80 nm. The morphology and composition of the alloyed powders were studied by scanning electron microscopy with energy dispersive spectroscopy. The results indicate that the powder was decreased to 1.59 μm for Fe powder with excellent homogeneity in composition. There exists a phase transformation during high-temperature annealing, as the non-equilibrium BCC supersaturated solid solution phase transformed into the equilibrium phase of BCC and ordered BCC (B2) phases.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ma17246061DOI Listing

Publication Analysis

Top Keywords

phase evolution
8
fecrnial 025
8
high-entropy alloys
8
mechanical alloying
8
supersaturated solid
8
solid solution
8
phase
5
synthesis phase
4
evolution nanocrystalline
4
nanocrystalline fecrnial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!