Mycomaterials are biomaterials made by inoculating a lignocellulosic substrate with a fungus, where the mycelium acts as a binder and enhances material properties. These materials are well suited as sustainable alternatives to conventional insulation materials thanks to their good insulation properties, low density, degradability, and fire resistance. However, they suffer from mold contamination in moist environments and poor perception ("organic" appearance). Furthermore, most mycomaterials to date have been derived from a limited range of fungal species, leaving the vast phenotypic diversity of fungi largely untapped. We hypothesized that by exploring a broader range of strains, we could enhance the likelihood of discovering a material that meets the needs for insulation panels. We generated mycomaterials from nine fungal strains and measured their thermal conductivity, mold resistance, and perception properties. We observed significant variations across strains on these three parameters. Thermal conductivity ranged from levels comparable to extruded polystyrene to nearly as effective as polyurethane (0.039 to 0.019 W/mK). All materials generated were hydrophobic (equivalent to 105-122° contact angle), but differed by a factor of two in color appearance and sensitivity to mold (0-94% of surface colonized). We also found a method to improve resistance to mold using deactivated contaminant propagules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17246050 | DOI Listing |
Carbohydr Polym
March 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:
Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFBiomed Rep
February 2025
Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan.
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India.
Silk-fibroin hydrogels have gained considerable attention in recent years for their versatile biomedical applications. The physical properties of a complex hydrogel, comprising silk fibroin and riboflavin, surpass those of the silk fibroin-hydrogel without additives. This study investigates silk fibroin-riboflavin (silk-RIB) hydrogel at the atomistic level to uncover molecular structures and chemical characteristics specific to silk fibroin and riboflavin molecules in an aqueous medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!