Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase. In contrast, in the new method, to enhance the encapsulation efficiency, the hydrogel beads are prepared in the gas phase using a water-repellent surface. In brief, a droplet of sodium alginate aqueous solution is rolled on a water-repellent surface with CaCl powder, a cross-linking agent. This process leads to the direct attachment of CaCl powder to the droplet, resulting in the formation of spherical hydrogel beads with high mechanical strength and higher encapsulation efficiency than beads prepared by previous methods. The hydrogel beads exhibit similar permeability for glucose, a model for low-molecular-weight medicines, to those prepared by previous methods. These results show that the new method is promising for the preparation of calcium alginate hydrogel beads for drug-delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ma17246027 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA.
Cellulose microgel beads fabricated using the dropping technique suffer from structural irregularity and mechanical variability. This limits their translation to biomedical applications that are sensitive to variations in material properties. Ionic salts are often uncontrolled by-products of this technique, despite the known effects of ionic salts on cellulose assembly.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFFood Chem
December 2024
Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:
Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.
View Article and Find Full Text PDFGels
November 2024
Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.
The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!