AI Article Synopsis

Article Abstract

Silkworm () is an economically significant insect that produces silk and makes important contributions to the development of silk-producing countries. The genetic diversity and unique adaptive traits of silkworm germplasm resources form the foundation for breeding efforts. In various geographical regions, silkworm have developed distinct traits through long-term adaptive selection. In this study, we focused on identifying and evaluating representative silkworm germplasm resources from both China and Uzbekistan. We discovered notable differences in the morphology and production traits of local silkworm strains, likely influenced by differing geographical environments. It is also possible that China has a long history of silkworm rearing and after a long time of breeding selection, the diversity of silkworm morphology is less than that of Uzbekistan, but the production characteristics are more suitable for silk utilization. Phylogenetic analysis based on genomic comparisons revealed that Uzbekistan's local silkworm strains are positioned between China's local and improved strains. This suggests that Uzbekistan silkworms primarily originated from China. The further analysis of genetic diversity and strain differentiation highlights the unique differences of each country's silkworms, especially in terms of genetic diversity on chromosome 1 (sex chromosome). By identifying and evaluating these germplasm resources and linking them to unique advantageous traits, it provides a scientific basis for improving cocoon silk quality and optimizing sericulture productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677644PMC
http://dx.doi.org/10.3390/insects15121020DOI Listing

Publication Analysis

Top Keywords

genetic diversity
16
germplasm resources
16
silkworm
9
resources china
8
china uzbekistan
8
silkworm germplasm
8
identifying evaluating
8
local silkworm
8
silkworm strains
8
genetic
4

Similar Publications

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

Androgens are pleiotropic and play pivotal roles in the formation and variation of sexual phenotypes. We show that differences in circulating androgens between the three male mating morphs in ruff sandpipers are linked to 17-beta hydroxysteroid dehydrogenase 2 (HSD17B2), encoded by a gene within the supergene that determines the morphs. Low-testosterone males had higher expression in blood than high-testosterone males, as well as in brain areas related to social behaviors and testosterone production.

View Article and Find Full Text PDF

Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.

View Article and Find Full Text PDF

Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!