Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ongoing interplay among plants, insects, and bacteria underscores the intricate balance of defense mechanisms in ecosystems. Regurgitant bacteria directly/indirectly impact plant immune responses, but the underlying mechanism is unclear. Here, we focus on the interaction between regurgitant bacteria, diamondback moth (DBM), and plant. Six culturable bacteria were isolated from DBM gut regurgitant, including three strains (RB1-3), sp. (RB4), (RB5), and (RB6). These RB strains suppressed genes related to jasmonic acid and glucosinolate signaling pathways but had little effect on salicylic acid signaling pathway genes in wounds. RB1 and RB5 inhibited DBM development on but not on an artificial diet. RB1 and RB5 significantly suppressed GOX genes and proteins in DBMs. However, the insect mutant strain inoculated with RB1 or RB5 did not significantly affect DBM feeding on compared to the wild type. Six RB have been functionally identified, with RB1 and RB5 negatively regulating GOX-mediated host adaptability. The deliberate addition of RB1 and RB5 can negatively affect DBM herbivory and fitness. Our study provides a molecular basis for the further application of RB for insect pest management by modulating insect-plant interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/insects15121001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!