A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacteria Derived from Diamondback Moth, (L.) (Lepidoptera: Plutellidae), Gut Regurgitant Negatively Regulate Glucose Oxidase-Mediated Anti-Defense Against Host Plant. | LitMetric

The ongoing interplay among plants, insects, and bacteria underscores the intricate balance of defense mechanisms in ecosystems. Regurgitant bacteria directly/indirectly impact plant immune responses, but the underlying mechanism is unclear. Here, we focus on the interaction between regurgitant bacteria, diamondback moth (DBM), and plant. Six culturable bacteria were isolated from DBM gut regurgitant, including three strains (RB1-3), sp. (RB4), (RB5), and (RB6). These RB strains suppressed genes related to jasmonic acid and glucosinolate signaling pathways but had little effect on salicylic acid signaling pathway genes in wounds. RB1 and RB5 inhibited DBM development on but not on an artificial diet. RB1 and RB5 significantly suppressed GOX genes and proteins in DBMs. However, the insect mutant strain inoculated with RB1 or RB5 did not significantly affect DBM feeding on compared to the wild type. Six RB have been functionally identified, with RB1 and RB5 negatively regulating GOX-mediated host adaptability. The deliberate addition of RB1 and RB5 can negatively affect DBM herbivory and fitness. Our study provides a molecular basis for the further application of RB for insect pest management by modulating insect-plant interactions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/insects15121001DOI Listing

Publication Analysis

Top Keywords

rb1 rb5
20
diamondback moth
8
gut regurgitant
8
regurgitant bacteria
8
affect dbm
8
rb5 negatively
8
rb5
6
bacteria
5
dbm
5
rb1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!